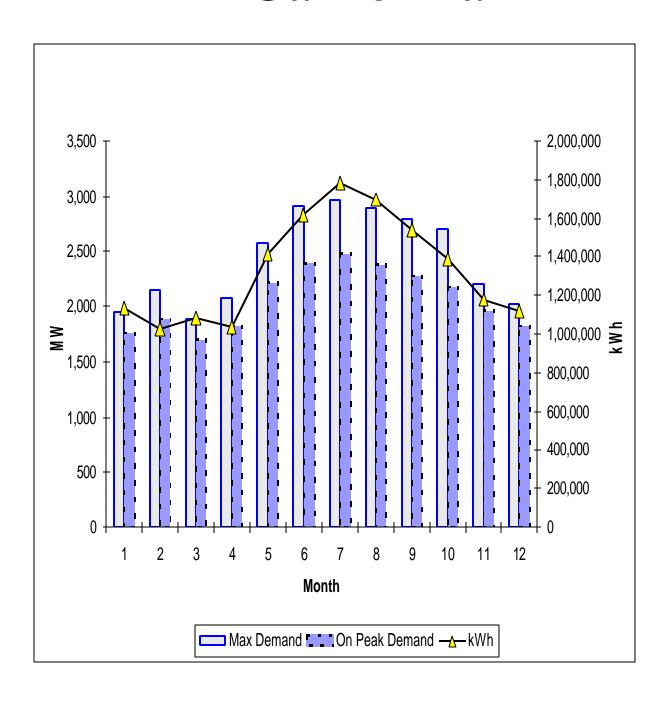
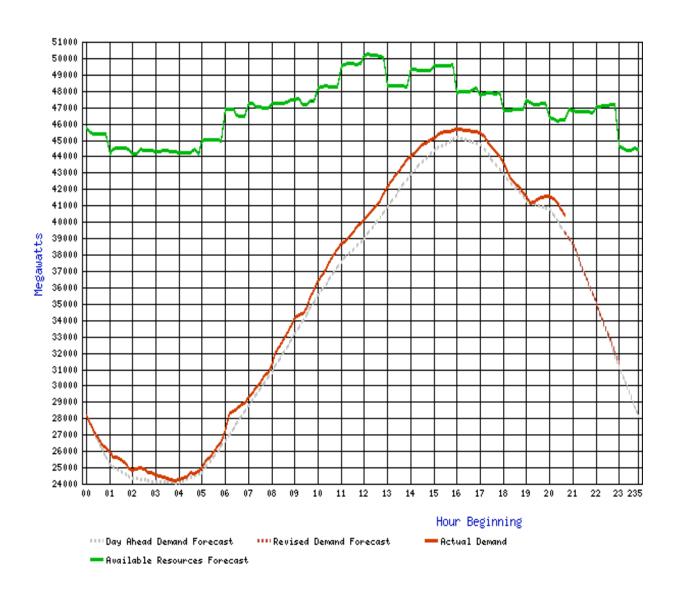
Water-Energy Relationships

Lon W. House, Ph.D. 530.676.8956

www.waterandenergyconsulting.com
Docket 04-IEP-1H
January 14, 2005

California Hydrology

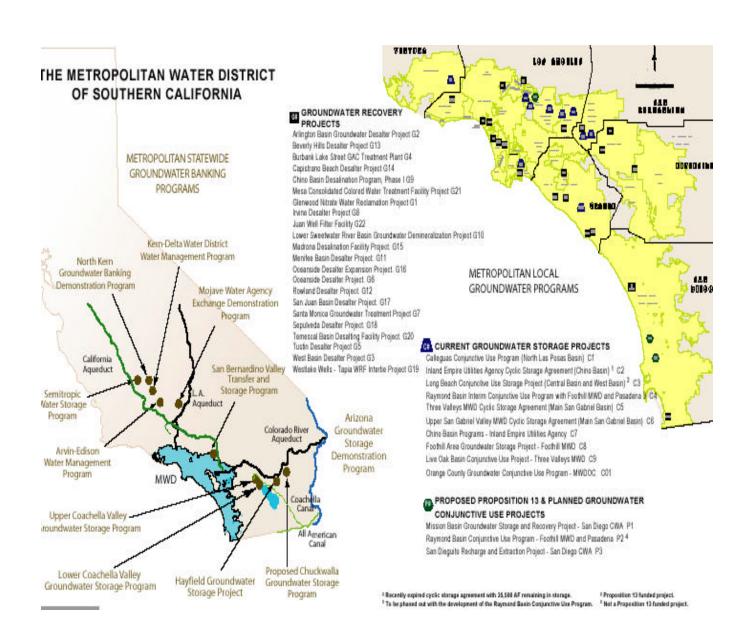

- 75% of rainfall occurs north of Sacramento
- 80% of use of water occurs south of Sacramento
- Mediterranean climate: 80% of the precipitation occurs from November to March. Most as snow, melts through August/September.
- Majority of water use is in summer
- About 71,000,000 acre-feet of water per year is runoff
 - flows to ocean 36%
 - environmental flows 28%
 - agriculture 28%
 - urban/industrial 7%
 - other 1%


California Water System

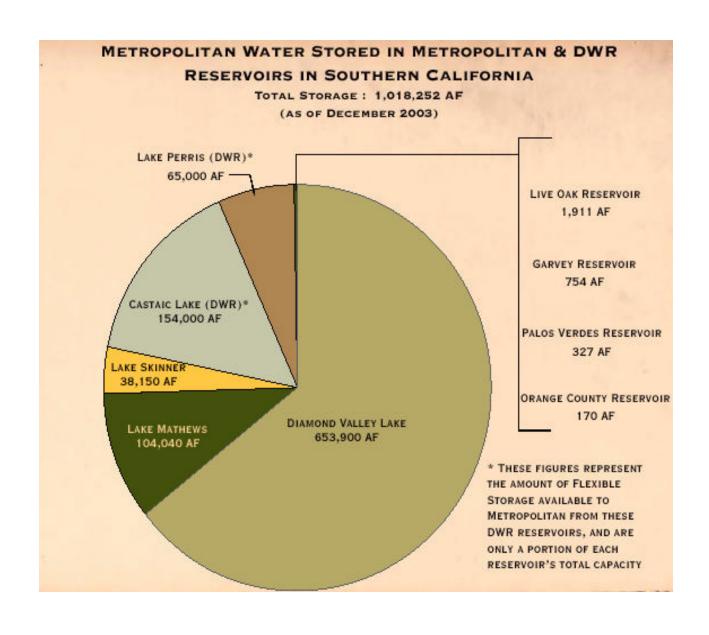
Water Agency Electricity Requirements in California

September 8, 2004

Previous energy use record of 43,609 MW, set in July 1999.

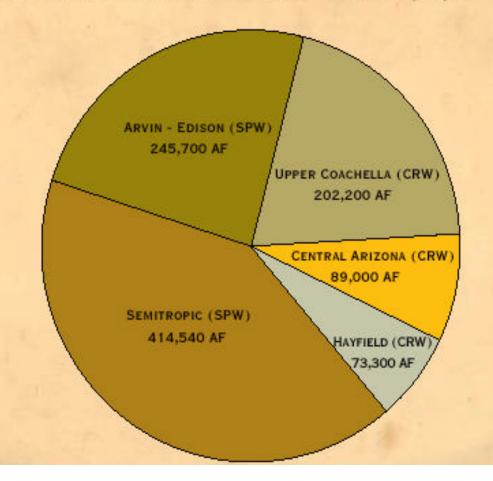

July 19 - 44,042 MW; July 20 - 44,330 MW; July 21 - 44,360 MW; August 10 - 44,497 MW; August 11 - 44,872 MW; September 7 - 45,165 MW; September 8 - 45,597 MW.

New Water Electricity Requirements


- Conjunctive Use Development
- Desalinization
- Drought/Climate Change
- Increased Treatment Requirements
- Increased Population

Conjunctive Use Southern California

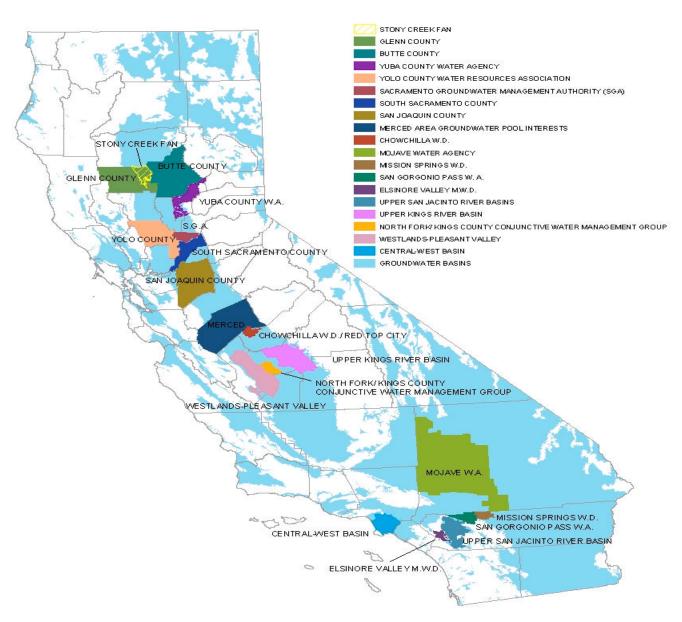
MWD Above Ground Storage


MWD Groundwater Conjunctive Use

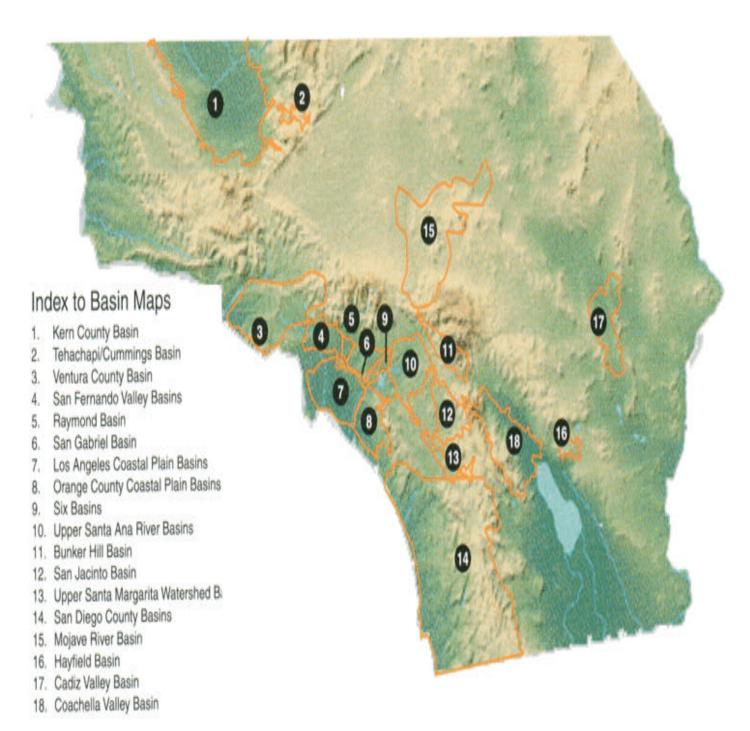
(AS OF DECEMBER 2003)

TOTAL COLORADO RIVER WATER (CRW) GROUNDWATER STORAGE: 364,500 AF
TOTAL STATE PROJECT WATER (SPW) GROUNDWATER STORAGE: 660,240 AF

TOTAL MWD GROUNDWATER STORAGE OUTSIDE ITS SERVICE AREA: 1,024,740 AF


New Met Groundwater Storage Projects

- 5 New agreements for 192,000 acre-feet
 - Three Valleys Municipal Water District and the City of La Verne -Live Oak Basin
 - The City of Long Beach and Central and West Basin Municipal Water District
 - Central Basin
 - Foothill Municipal Water District Monkhill Sub-basin of the Raymond Basin
 - Inland Empire Utilities Agency, Three Valleys MWD, and the Watermaster - Chino Basin
 - Municipal Water District of Orange County and Orange County Water District
 - Orange County Basin
- San Diego County Water Authority in the Raymond Basin for up to 75,000 acre-feet of storage.
- Calleguas Municipal Water District storage and extraction in the North Las Posas Basin in Ventura County. This program has been phased; phases 1 and 2 are scheduled to come online by 2005. Completion of facilities necessary for management of a 210,000 acre-foot storage program in this basin should be operational by 2010.


Conjunctive Use Sites Northern California

Department of Water Resources Conjunctive Water Management Branch MOU Partners

Potential Southern California Sites

21 million acre-feet dry year storage

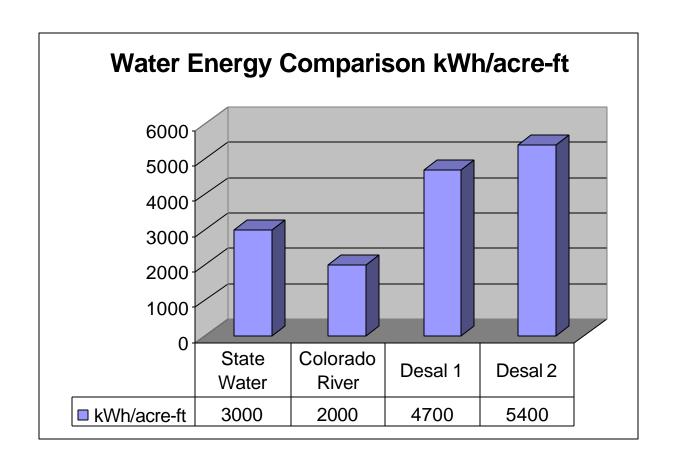
Last DWR Supply Update

California Water Budget with Existing Facilities and Programs (maf)

	1995		2020				
Aver	rage Droi	<i>ight</i>	Average Drought				
	Wate	r Use					
Urban	8.8	9.0	12.0	12.4			
Agricultural	33.8	34.5	31.5	32.3			
Environmental	36.9	21.2	37.0	21.3			
Total	79.5	64.7	80.5	66.0			
	Supplies						
Surface Water	65.1	43.5	65.0	43.4			
Groundwater	12.5	15.8	12.7	16.0			
Recycled and							
Desalted	0.3	0.3	0.4	0.4			
Total	77.9	59.6	78.1	59.8			
Shortage							
	1.6	5.1	2.4	6.2			

Seawater Desalination Facilities in California

Existing:


- About a dozen small facilities along coast.
- Total production about 2.7 mgd.
- Generally for droughtrelief, emergencies, industrial processes.

Proposed:

- Over 20 new facilities; including largest in U.S.
- Total production about 250 mgd.
- To provide baseline water supply.

Desal Electricity Requirements

Each facility ~30-50MW

Drought Climate Impacts

- Climate change snowpack reduction in Sierra could result in loss of 2.6 - 4.0 million acre-feet of water storage
- Drought in Southwest could seriously deplete the Colorado River, and California's share
- Drought/climate change will reduce quantity, availability, and timing of hydroelectric generation
- All remedies will require significantly more electricity use

River Characteristics

_		Gen	eratio	n (in M	W) Runoff	Dry			
_	River Water A	gency Gener	ration	Utility	1000 Ave. AF	% Ave	<u>County</u> 1	Min cfs	
_	Pit/Fall			768	5,896	42%	Shasta	120	
_	Feather River			738	4,526	21%	Butte/Plumas	50	
_	Feather -South F	Fork							
_	<u>Orovi</u>	lle-Wyandotte	118	291	291	11%	Butte		
_	Yuba	Yuba CWA	396	12	2337	16%	Yuba	5	
_	Bear River	Nevada ID	80	208			Nevada/Place	r 7	
_	American - North/Middle								
_		Placer CWA	200	245			Placer		
_	South Fork								
_		El Dorado ID	21	7	2,674	13%	El Dorado		
_	Mokelumne	East Bay MUI	<u>D</u> 39	209	736	31%	Amador		
_	Stanislaus	<u>TriDam</u>	96	100	1,131	14%	Tuolumne	38	
_	Merced	Merced ID	99	4	952	16%	Merced		
_	San Joaquin	Friant Power	25	221	1,753	21%	Fresno/Madera	a 23	
_				1,014					
_	Kings	Kings River	165	345	1,647	23%	Fresno	4	
_				1,200	Helms Pumpe	d Storage	Fresno		
_	Kern River			12	694	25%	Kern	22	
_	Tule River			6	135	12%	Tulare		

Water Agency Peak Demand Reductions

- More Effective Use of Storage
- Add More Storage
- Get Customers to Shift Water Demand

More Effective Use of Existing Storage

Hourly Reservoir Levels

Oak Ridge Tanks Storage (8 MGals - Total)

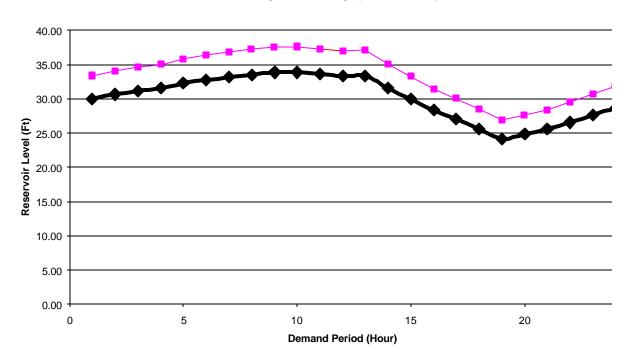
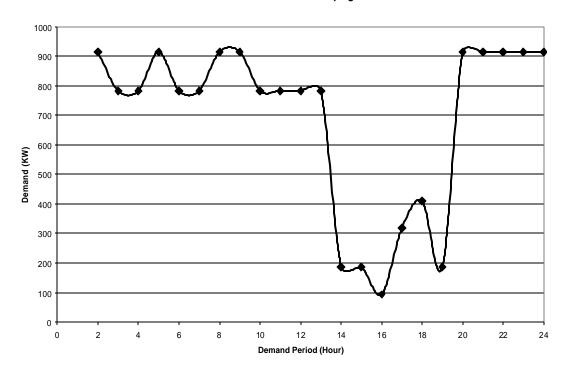
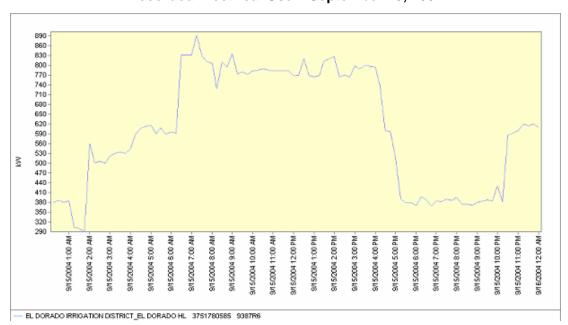
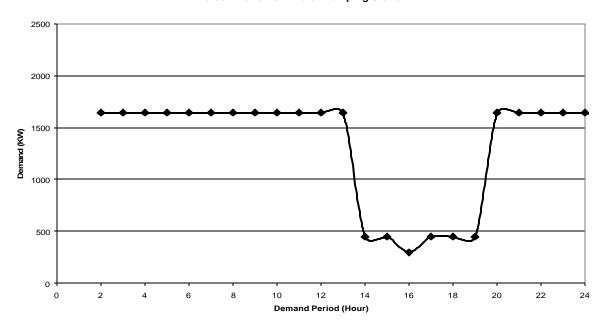
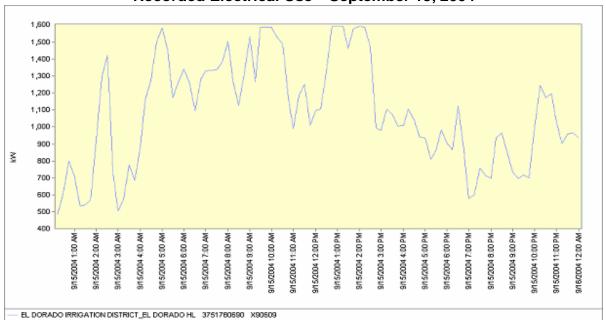




Figure 5. Treatment Plant Hourly Electrical Demands Demand Response Profile (14.5 MGal Demand)

PG&E ID #3751780585
EID EDH WTP & Treated Water Pumping Facilities



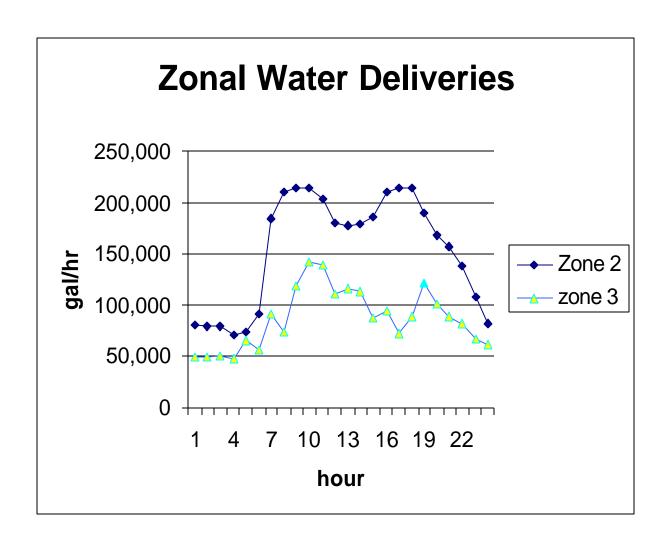
Recorded Electrical Use - September 15, 2004



Folsom Lake Raw Water Pumping Station Hourly Electrical Demands Demand Response Profile (14.5 MGal Demand)

PG&E ID#3751780690 Folsom Lake Raw Water Pumping Station

Recorded Electrical Use – September 15, 2004



TOU Water Meter Proposal

- To CEC PIER Program
 - Inventory TOU water meter options
 - Develop TOU water tariffs
 - Install TOU meters on
 - Residential
 - Commercial / Industrial
 - Assess real-time meter changeout impact on wholesalers
 - Projected deployment by spring 2005
 - Interim report fall 2005
 - Final report fall 2006

If Water Agencies Can Get Customers To shift Demand, They Can Reduce Peak Usage

Water Agency Generation Opportunities

- Water agencies (exclusive of those selling retail electricity) already have about 1,500 MW of generation
- Water agencies are essential services, and have to have back up generation for critical loads
 - over 1/3 of all back up generation in the state is owned by water agencies
- Virtually all water treatment facilities are suitable for biogas generation
- Virtually all water agencies have potential for additional small hydro generation
- Institutional barriers have prevented development of this additional generation

Summary

- Water agencies are the single largest electricity end user in California
 - have the most potential to shift 1,000
 MW+ of peak demands without disrupting service
 - have untapped generation potential of 1,000+ MW
- Drought significantly reduces hydro generation and increases pumping requirements
- Climate change may significantly reduce available water
- There is a lot of new water related electricity demand being developed that we haven't seen yet, and may see only occasionally